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The flow of a jet from a body opposing a 
supersonic free stream 

By P. J. FINLEY 

Engineering Department, Cambridge University? 

(Received 27 August 1965 and in revised form 10 December 1965) 

A series of experiments is described in which a jet issues from an orifice at  the 
nose of a body in supersonic flow to oppose the mainstream. An analytical model 
of the flow is developed which suggests that the aerodynamic features of a steady 
flow depend primarily on a jet flow-force coefficient, and the Mach number of the 
jet in its exit plane. A sufficient condition for steady flow is developed. The experi- 
ments are found to agree well with predictions based on the flow model. A short 
account is presented of some previous investigations, and some of their conclu- 
sions are re-examined in the light of the present study. 

1. Introduction 
A body immersed in a high-velocity gas stream is subjected to high tempera- 

tures and pressures over its forward-facing surfaces. Various authors have 
suggested that the pressure and temperature distributions might be modified 
with advantage by the introduction of a secondary flow at or near the front 
stagnation point of the body. 

Baron & Alzner (1963) have described a theoretical and experimental investi- 
gation of an attached ‘shock cap’, originating as a source flow within the body, 
and forming a thin layer of fluid over the body nose. This might be utilized to 
provide a protecting blanket of low temperature fluid in hypersonic flight. An 
experimental investigation with the same aim has been made by Warren (1960), 
in which the secondary flow originated in a separated jet opposing the main- 
stream. Lopatoff (1951) and Love (1952) have shown that a separated jet 
modifies the pressure distribution so as to reduce the pressure drag of the body. 
In  these investigations the ratio of the body diameter d, to the jet diameter dj 
(see figure 1) is large, of the order 20. Other practical investigations in which the 
jet diameter is of the same order as that of the body are described by Watts (1956) 
and Romeo & Sterret (1963). 

These investigations have shown that a low-velocity ‘dead-air ’ region sur- 
rounds the jet and that the bow shock is displaced forwards. The pressure in the 
dead-air region is markedly lower than the stagnation-region pressures of the 
same body with no jet. In  general the bow shock moves forward and the dead 
air region pressure drops as the total pressure of the jet increases. Romeo & 
Sterret have shown that the flow tends to be very unsteady when the jet total 
pressure is low and the jet is small as compared to the body from which it issues. 
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Steady flows are found with large jets and high jet total pressures, when the jet 
has a single cell terminated by a strong shock. These previous studies together 
cover a wide range of variables, but do not indicate how the observed phenomena 
may be predicted, or correlated on a simple basis. The present study is intended 
to accomplish this for flows in which the jet separates from the body surface. 

2. Controlling parameters 
Figure 1 shows a jet issuing from a body against a supersonic airstream. The 

bow shock stands away from the body surface, and takes a form appropriate to 
a new body consisting of the original body with a protrusion due to the jet flow. 
The boundary of this protrusion is defined by the interface, the stream surface 
between the jet flow and the mainstream flow. 

In rerface 

\ 
FIGURE 1. Principal features of the flow, and independent variables. 

It will be assumed that the flow is axially symmetrical throughout, that the 
jet and the mainstream consist of perfect gases, and that the jet is uniform, and 
parallel in its exit plane. The scale is assumed to be such that variations of 
Reynolds number may be neglected, and no account is taken of heat transfer 
to or from the body. The independent variables are then those which specify the 
size and shape of the body and nozzle, and the aerodynamic properties of the jet 
and the free stream. 

The experimental investigation was restricted to separated jets issuing along 
the axis of a family of spheroids of elliptic meridian section. This includes all 
shapes tested by other workers excepting Baron & Alzner (1963), who were 
primarily interested in an attached flow. The body shape and size are then 
specified by the fineness h and the body diameter D, defined by 

h s a/b, D = dn,/di, 



Jet opposing a supersonic free stream 339 

where a, b are the semi-axes of the elliptical section parallel and normal to the 
free stream and d, (= 2b)  is the nose-shape diameter. The diameter di of the jet 
is chosen as the reference linear dimension throughout the paper. 

The properties of the free stream and the jet are specified by their specific-heat 
ratios, y j  for the jet and ym for the free stream, and by the ratio N of their 
molecular numbers Nj and N,. For dynamic similarity it is also necessary to state 
the free-stream Mach number H, and the jet Mach number Mj. It remains to 
specify the jet total-pressure ratio P and the total-temperature ratio T ,  given by 

P = PojIPof, T = TojlT'm, 

where poj is the jet total pressure, pof  is the Pitot pressure of the free stream, Toi 
is the jet total temperature and Tom the free-stream total temperature, taken as 
the reference temperature. 

The free-stream Pitot pressure p o f ,  the total pressure after a normal shock, is 
chosen as the reference pressure. At high free-stream Mach numbers, the pressure 
on a blunt body is given closely by Newtonian theory. The local surface pressure 
then depends primarily on pof  and the local surface inclination. Watts (1956) 
showed that the interface was blunt for large jets. 

An interface of given shape thus implies a given pressure distribution, only 
slightly dependent on M,, and virtually independent of the other free-stream 
quantities To,, ym, N,. A given jet flow within a given interface may therefore 
be exposed to a range of supersonic streams of high Mach number, and, if pof  
remains constant, changes of free stream will only have a slight effect on the 
pressure field, mainly through changes in the development of a mixing layer on 
the interface. 

The principal independent parameters of dynamically similar flows are thus 
the non-dimensional body diameter D, the body-shape fineness A, the jet total- 
pressure ratio P, the jet exit-plane Mach number Mi, and the jet-gas specific-heat 
ratio y j .  

The parameters N, ym, T are expected to affect mixing processes, and so 
control transfer of heat to or from the body. This aspect is not being studied here. 
If M, is large they will have little influence on the main aerodynamic aspects of 
the flow. The influence of M, will be demonstrated by the analysis. 

3. Experimental arrangements 

(6.25in. x 4.5in.) working section. The free stream properties were: 
All measurements were made in an intermittent wind tunnel with a rectangular 

M, = 2-5, porn = 40 psia, To, = 530"R, 

giving a free-stream Reynolds number of 7 x lo5 per inch. The models were 
hemisphere-cylinders of 2 in. diameter, or cylinders 1 in. in diameter, with 
spheroidal noses of various shapes. Air for the jet came from the tunnel supply 
through a diaphragm control valve so that the total pressure could be held 
constant in the range 80 < p o j  < 250psia. P thus lay in the range 1 < P < 12.5. 
The total temperatures of the two streams were uncontrolled, but both were 
found to be very close to room temperature (approximately 530 "R). Thus T == 1. 

2 2 - 2  
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In  some experiments carbon dioxide from a commercial cylinder was ducted to 
the jet instead of air, when the temperature fell below room temperature but was 
not controlled or measured. 

3.5 in. 

/ '0'-ring seal t;be 

FIGURE 2.  Section of one of the 2in. diameter models. 

Figure 2 shows the construction of one of the 2 in. diameter models. The nose 
contains a convergent passage leading to the orifice, finishing in a short parallel 
section with a sharp lip, so that Mj was 1. The values of D were 7-6,16.4 and 33.3. 
A 5" conically divergent nozzle was also constructed such that the flow, if 
assumed one-dimensional, emerged a t  Mi = 2.6. For this nozzle D = 9.4. These 
models had static-pressure holes distributed in a spiral on the spherical surface 
(for location see figure 5 ) ,  and an internal total-pressure tapping, shown in 
figure 2. 

The 1 in. diameter spheroids had a contraction leading to a plug in which the 
nozzle was formed. This plug was drilled out and replaced to  vary D in the range 
3-5 < D < 35. There was a single static hole adjacent to the plug, and the jet 
total pressure was measured internally. The exterior shapes were spheroids such 
that h = 0, 0.5, 1, 2 .  A special model with an outside diameter of &in. was 
constructed for the case h = 0, D = 1.67. 

The accuracy of pressure measurement was governed by the accuracy with 
which the tunnel total pressure could be controlled, estimated at 0.75 %. The 
tunnel total pressure was measured on a test-quality bourdon-tube gauge. The 
jet total pressure was measured on a bourdon-tube gauge or a mercury mano- 
meter. Static pressures were recorded on a multitube mercury manometer in 
tests lasting 20 sec. 

The flow field was found to vary discontinuously with P, so provision was made 
for recording the variation of a static pressure with the jet total pressure electric- 
ally. Static pressure and total pressure signals were fed to strain-gauge pressure 
transducers to give D.C. signals which were fed to the axes of an X-Y chart 
plotter. The plot of static pressure as a function of jet total pressure obtained 
agreed with the manometer measurements. All pressure measurements quoted 
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are accurate to 1 yo. A conventional single-pass schlieren and shadowgraph 
system was used. 

Further details of the experimental arrangements are given by Finley (1963), 
with the full results, from which a selection is now described. 

4. General description of the flow 
Figure 3 shows the main features of the flow field as deduced from schlieren 

photographs such as figure 4, plate 1. 
The jet A separates from the sharp-edged orifice and moves forward to an 

interface B with the mainstream. There is a toroidal recirculation region, the 

) 

Terminal 
shock 

&\/Reattachment 

- -  

1-J Shear layer 

FIGURE 3. Features of the flow field. 

dead-uir region C around the jet. The fluid from the jet is deflected out and back 
over the dead-air region in the jet layer, to a reattachment ring E .  The dividing 
stream surface springing from the orifice returns to the body surface at  E ,  and 
a shear layer forms on either side of it. Fluid is entrained into the shear layer from 
the dead-air region and returned a t  the reattachment ring. The jet layer turns 
along the model surface at  E and flows away downstream. The pressure rise 
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associated with the reattachment of the shear layer causes a turning shock G in 
the jet layer and the flow from the mainstream outside the interface. A shear 
surface H runs downstream from the intersection of the turning shock with the 
bow shock. 

In  a steady flow, both the free stream and the jet come to rest on the axis at  a 
free stagnation point F, where the pressure is the free-stream Pitot pressure pof .  
The jet  total pressui*epoj must be reduced topof by some shock system in the jet, 
the structure of which will be examined later. poj cannot be less thanpof, or there 
will be no outflow. 

1 *o 
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FICJVRE 5 .  Static pressures recorded on 2 in. hemispherical models with no jet. 
M ,  = 2.5. ---, experiment; -, modified Newtonian theory. 

As the jet total-pressure ratio P( =pOj/pof) increases from its minimum value 
of 1, the bow shock moves forward and the pressure on the forepart of the body 
drops. In  general this process is continuous except for a small critical range of P 
where the trend is reversed. Below the critical range the flow is observed to have 
more than one jet cell, and is generally unsteady. Above the critical range the 
flow is mainly steady with a single jet cell terminated by a normal shock. The 
change from one type of flow to the other is intermittent in character, the propor- 
tion of time for which a steady flow exists increasing as P increases. The estimated 
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value of P midway between the inception of the transition and its completion 
will be referred to as the critical value, Pcrit, and is a function of jet size and nose 
shape. For the model shown in figure 4, plate 1, Pcrit = 1.37. The photographs 
show clearly the change in the nature of the flow. 

A more detailed description of the flow field is presented by Sutton & Finley 
(1964). 

5. Experimental results 
Figure 5 shows the non-dimensional static-pressure distributions measured on 

the surface of the 2 in. diameter hemisphere-cylinders with no jet. Also shown is 
the pressure predicted by the modified Newtonian theory: 

PIPof = cos2 8 + (pc4/pof) sin2 8. 

This equation gives a good approximation to the observed pressure. 

FIGURE 6. Static pressures recorded on 2in. hemispherical model. M ,  = 2.5, M3 = 1, 
y = 1-4, D = 7-6. Values of P: a, 1.05; b, 1.08; c, 1-15; d, 1.25; e, 1-35;f, 1-52; g, 1.68; h, 2.08; 
i ,  2.23;j, 2.84; k ,  3.73; I, 4.70; m, 5-50; n, 6.54. 

Unless otherwise stated all results now presented refer to air jets leaving the 
orifice a t  Hi = 1. 

The static pressures observed on the model shown in figure 4, plate 1, for which 
h = I, D = 7-6, are given in figure 6. Figure 6(a) shows the values for P < Pcrit, 
and figure 6(b) for P > Pcrit. The curve determined with no jet is also shown. 
Near to the jet there is a low-pressure region corresponding to that part of the 
surface adjacent to the dead-air region (C, figure 3). As 6 increases, p falls to 
a minimum value p d ,  defined as the experimental dead-air pressure, and then 
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rises to a maximum p,, a t  Om, near to the reattachment point.The reattachment 
is believed to occur just before the pressure maximum, therefore p ,  will be called 
the reattachment pressure and 6, the reattachment angle. At larger 6 the static 
pressure tends to the value with no jet. 
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y 2 ;  Regime 3 

Pcrit. 
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P 

FIGURE 7. Variation of dead-air pressure p d ,  reattachment pressure p,, and bow-shock 
stand-off distance lb, with jet total-pressure ratio. M ,  = 2.5, M j  = 1, y = 1.4, D = 7.6, 

= 1. @ 9 p,/pof; @ 7 PdPOf; 0 t zb/dv%* 

The general pressure level falls as P increases except through the critical range 
of P (compare figure 6(a) ,  P = 1.35, and figure 6(b ) ,  P = 1-52). Figure 7 shows 
the dead-air pressure p d ,  the reattachment pressure pm, and the bow-shock 
stand-off distance lb, measured from photographs, as functions of P. The dis- 
continuity at Perit is clearly visible. For 1 < P < 1.13, a steady flow with more 
than one jet cell was observed (figure 4(a ) ) .  This is referred to as regime 1. As 
P increases regime 1 breaks down, and an unsteady flow, regime 2,  is observed 
in which all the features of the flow fluctuate considerably (figure 4 ( b )  and ( c ) ) .  
A steady single-cell flow begins to appear for short periods when P = 1.35, and is 
fully established when P = 1.42. The steady flow with a single jet cell will be 
termed regime 3, and persists to the highest values of P attainable with the 
apparatus (figure 4 ( d ) ,  ( e )  and (f)). 

Figure 8 shows the pressure distributions for a hemisphere-cylinder with a 
smaller jet (D = 16.4). The same general features are to be observed, but the 
static pressure level for a given value of P is higher. For this model, Pcrit = 3.0. 
Photographs are shown in figure 9 ( a ) ,  (b) ,  (c) ,  plate 2. The flow in the neighbour- 
hood of the reattachment (E, figure 3) fluctuates even when the jet is steady. 
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Regime 3 is divided into flows with slightly fluctuating reattachment, regime 3 a ,  
and those with effectively steady reattachment, regime 3b.  The reattachment is 
deemed to be steady if a clear image of the shear surface H (figure 3 )  is found on 
a long exposure photograph of the flow. The shear surface is very thin, so that if 
the turning shock G (figure 3) fluctuates, no image of the shear surface is found 
except in spark photographs. Figure 9 (b ) ,  plate 3, shows regime 3 a  and 9 ( c )  shows 
regime 3 b. 
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FIGURE 8. Static pressures recorded on 2 in. hemisphericalmodel. M ,  = 2.5, Mi = 1, y = 1.4, 
D = 16.4. Values of P :  a, 1.26; b, 1.51; c, 1.79; d, 2.07; e,  2.30;f, 2.55; g, 3.25; h, 4.25; i, 4.75; 
j, 5.25; k ,  5.15; I ,  6.25; m. 7.25. 

The pressures measured in regime 3 on a hemisphere-cylinder for which 
D = 33.3 are shown in figure 10, which also shows values for a jet which is super- 
sonic in the exit plane. The results for Nj = 2.6, D = 9.4, are of the same kind as 
those for Mj = 1. The critical total-pressure ratio Pcrit was 10.4 in this case. 

Pressure measurements were made with carbon dioxide replacing air in the jets 
from convergent nozzles, and no significant differences were observed, either in 
static pressure, or in the value of Pcrit. 

Figures 9 (d), (e) and ( f )  show that the flow about other spheroidal noses is of 
the same type. A continuous record of the static pressure a t  a point near the jet 
was made for each model. Some of these records are shown to  a common scale in 
figure 11. The curves for h = 1 are plotted from figures 6, 8, 10 and refer to the 
minimum or dead-air pressure pd.  The curves for h = 0 and 0.5 were recorded 
electrically from a single point which may not have been quite a t  the pressure 
minimum. The tapping on the l in .  diameter models for h = 1, h = 2 was far 
from the minimum, so curves for these models are not presented. 
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The discontinuity in pd between either regime 1 or 2 and regime 3 is clearly 
visible, and values of Pcrit from these records and those for h = 1, h = 2, are 
shown in figure 12 as a function of D and A. The approximately linear variation 
of Pcrit with D for values of Pcrit < 5 is notable. 

0 6  

0.2 

0 1  

0 
0 10 20 30 40 50 60 70 

e o  

FIGURE 10. Static pressures recorded on 2 in. hemispherical models. 
Values of P :  a, 6.75; 6, 8.45; c, 9.75; d, 10.7; e, 12.0;f, 13-3. 

In  figure 11 (a) ,  the maximum observed values O f p d  in regime 3 can be seen to 
lie in a narrow band. Some of the irregularities of the curves in regime 3 can be 
related to changes in the reattachment flow. In  particular, the change from 
regime 3a to regime 3 b for the two cases h = 1, D = 16-4, and h = 0.5, D = 10.2, 
near P = 5 is marked. 

Other quantities connected with the flow were measured from the schlieren 
photographs. Figure 7 gives the bow-shock stand-off distance lb for the model 
( A  = 1, D = 7.6). The interface is not generally visible in a photograph, as, when 
T = 1, there is no discontinuity of density or density gradient across it. A t  high 
mass flow rates, however, there was a slight difference between To, and Toi, and 
an image of the interface, nearly spherical, may be seen in figures 4(f ) ,  plate 1, 
and 9(f) ,  plate 2 .  

An indirect method was adopted to locate the interface in other photographs. 
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The co-ordinates of the bow shock were matched by the method of least squares 
to general symmetrical conic sections. Van Dyke & Gordon (1959) have calcu- 
lated the bodies which support shocks of conic meridian section, and which are 
themselves closely conic sections. The solution gives the diameter df of the 
tangent sphere to the interface nose, the fineness h of the interface, and the 

1.0 I I I 1 I I I I I I 1 I 

--.. 

A 

I I I I I I I I I I I 

P 

FIGURE 11. Variation of dead-air pressure p d  with jet total-pressure ratio P as recorded on 
various spheroidal models. M ,  = 2.5, M .  3 -  - 1, y = 1.4. -, h = 1 with valuesof D :  a, 7.6; 
b, 16.4; c ,  33.3. ---, h = 0.5 with values of D:  d, 3.8; e ,  5*29;f, 6.25; g, 7.70; h, 10.2; i, 14.3. 
_._ , h = 0 with values of D : j ,  3.97; k ,  5.21; I ,  6.25; m, 7.9; n, 10.3; 0, 14.3. 

separation of the bow shock from the interface ( I b  - Zf). Since the bow shock is not 
exactly a conic, an unavoidable uncertainty appears in the results. This is small 
in the calculation of d,, and when the calculated value could be checked, as in 
figures 4 ( f ) ,  plate 1, and 9(f) ,  plate 2, no significant discrepancies were found. 

The interface nose was calculated to be slightIy blunter than a sphere. The 
average result is h 2 0.9, but the difference between h = 0.9 and h = 1 is less 
than the standard deviation of the determination, which was about 0.4. The 
interface will therefore be treated as spherically nosed hereafter. 

The results calculated from the photographs are presented in connexion with 
the analysis later. 
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6.  Analysis of steady flows 
6.1. Conditions on the $ow model 

The flow, as sketched in figure 3, is divided into regions within which simplifying 
assumptions are made. The interactions of these regions with one another give 
the framework of the analysis. 
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FIGURE 12. Variation of the critical total-pressure ratio Pcrit for models of various shapes 
with relative body size D. M ,  = 2.5, Mi = 1. 

The pressure in the dead-air region C, figure 3, is taken to be effectively uniform, 
the dead-air pressurep,,. The initial development of the jet is taken to be that of 
a free jet of total pressure po j  exhausting to a still atmosphere of pressure p,,. 
A condition imposed on this equivalent free jet is that its total pressure poj  fall to 
pop a t  the free stagnation point. The final shock of the jet structure, the terminal 
shock, must be a normal shock. 



Jet opposing a supersonic free stream 349 

The free-stream Mach number is taken to be sufficiently high for the pressure 
on the interface to be given by modified Newtonian theory. The jet layer outside 
the dead-air region is assumed thin, and since the pressurep, within the dead-air 
region is uniform, matching p ,  to the pressure on the outside of the jet layer gives 
a conical interface. 

In  front of the dead-air region, the interface is smoothly curved, crossing the 
axis normally, and the pressure is high, as is required to turn the jet out into the 
jet layer. The pressure forces on the interface must be balanced by the pressure 
forces and momentum fluxes of the jet and jet layer and the force exerted on the 
dead-air region by the nose. 

The shear layer on either side of the dividing stream surface reattaches to the 
body at E (figure 3). The flow near the reattachment ring must be such as to make 
good the entrainment into the shear layer from the dead-air region. The 
mechanism of reattachment is discussed in detail by Chapman et al. (1957), 
Cooke (1963) and others. The Chapman model has been used to guide an inde- 
pendent experimental study of an annular shear layer attaching to a hemisphere 
by Finley (1963). This showed that the jet layer would turn through a defiexion 
angle E in the range 8" < E < 32" on encountering the body surface. 

The jet must be of such length that it can support an interface which meets the 
body surface at  an appropriate value of E. 

6.2. Momentum balance for the interface 

The interface is taken to be a spherically blunted cone as shown in figure 13. It 
is specified by the cone semi-apex angle a and the diameter of the blunting 
sphere d f .  If q5 is the local inclination of the surface to the free stream, and p ,  the 
free-stream static pressure, modified Newtonian theory gives 

PlPOf = sin2 @ + (PrnIPOf) cos2 4. 

PdIPOf = sin2 a + (Pa1Po.f) cos2 01. 

The dead-air pressure p ,  is therefore given by 

(1) 

Figure 13 shows the control surface for the force and momentum balance as 
a broken line. The interface is closed by a surface, including the jet orifice plane, 
which meets the interface in the conical region. The pressure on this surface is 
constant, the dead-air pressure pa, except over the jet orifice where it is p j .  The 
pressure on the interface is integrated to give the momentum-balance equation 

+-rd~cos4a(pof-pm) - t nd f (p j -pa )  = wjvj+wlv,cosa, (2) 

where wj and vj are respectively the jet mass flow and exit-plane velocity, w1 and 
vl are the jet-layer mass flow and velocity leaving the control surface. The total 
momentum of the flow in the jet layer is assumed to be that of the jet mass flow 
expanded uniformly and isentropically from pof  to pa;  the non-uniformity of 
total pressure due to the shock structure in the jet is neglected. 

Aspecific flow-force function G, a mass-flow function W and a velocity function 
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V are introduced, with suffices j when used for the jet and 1 for the jet layer, 

(3) 

where G = (PA + W W ) / U ~ ( C ~  To)$ = G ( M ,  y ) ,  

w = W(C, To)$/Apo = W ( M ,  y ) ,  
V = v/(C, To)* = V ( M ,  7). 

Layer out 

FIGLTRE 13. Control surface used for the momentum balancc of 0 6.2. 

The product GW is denoted by I .  If the jet flow forcet $. is defined by 

$. = $ndj2pj + wjvj, 

4. = Gj y /$nd5poj  = 4 $nd3poj. then 

Equation (2) may now be written 

(4) 

( 5 )  

Dj = PA{ 1 + (J{/Gj) cos a}.?-’ - (PJpof) Z-l, (6) 

where Df = df /d j  and Z = 4 c0s4a( 1 -palpop), a function mainly ofp,/pof. 
The relation between pd/pOf  and P/D; for the case Mm = 2.5,  Mj = 1, y = 1.4, 

has been calculated from equation (S), and is shown in figure 14. It can be seen 
that if P > 5, the second term on the right of equation (6) may be neglected. 
Physically this is to say that p a  acting on the area of the jet is negligible as 
compared t o  the other pressure forces. 

Now df/d, = (d f /d j )  (d,/d,) so that, when P is large, equation (6) may be 
written 

(df/d,)2 = (PI/D2) (1 + (V/Gj) cosc~fZ-1. 

t The quantity P( = p A  + ww) appears frequently in fluid mechanics. Benjamin (1962) 
has suggested the name ‘flow force’ as preferable to the commonly met ‘impulse’. 
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The jet flow-force coeacient C,, which is the jet force made non-dimensional 
with respect to pof  and the cross-section area of the body, and so defined by 

C, = q / $ n d k p o f  = PI/D2,  

(df/dm)2 = C,{1+ (K/Gj) c~sa}Z-~.  

(7) 

(8) 

is now introduced. Equation (6) becomes 

At high values of M,, Z tends to a function of a only. 
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FIGURE 14. Relation between dead-air pressure p1 and the interface-blunting-sphere 
diameter calculated from equation (6). M ,  = 2.5, M ,  = 1, y = 1.4. 

X/Gj depends on a and on Mj and yi. If the dependence on Mj and y j  can be 
neglected, equation (8) gives a single relation between df/dm and a for any given 
value of C,. The variation of X/Gi with y j  and Mi is shown in tables 1 , 2  for the 
case p,/poj = 0.314. 

Table 1 shows that yi may vary without any significant change in the relation 
between dj/dm and a, and also that, since 4 does not vary much with y j ,  C, is 
approximately proportional to P a t  constant Mi. Table 2 shows that for the 
relation between dj /dm and a to remain unaltered, CF need only increase by 
approximately 5 yo as Mj varies from 1 to 3. 4, however, varies widely, so that 
C, is not proportional to P. 

Thus equation (8) shows that 

4 l d m  = fi(C!, a)  (9) 

with small and calculable changes in the relation depending on Mi, and yi, so 
long as P is high and M, is high enough for pm/pOf to be small compared to 1. This 
will be assumed during the rest of the analysis. 
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6.3. T h e  distance of the interface from the body 

The jet of a steady flow of regime 3 is terminated by a single normal shock 
crossing the axis, as in figure 4(d), ( e )  and (f), at a distance 1, from the orifice. 
The total-pressure ratio across this shock P determines the Mach number M, of 
the flow entering it. Within the shock structure of the first cell, the flow of all jets 

Yj 1.33 1.40 1.67 
Vl/G* 0.76 0.76 0.74 
I ,  1.26 1.27 1.33 

TABLE 1. M j  = 1, p,/po, = 0.314. 

M ,  1 1-5 2 2.5 3 
J'lIGj 0-76 0-72 0.68 0.64 0.61 
13 1-27 1.13 0.84 0.57 0.37 

TABLE 2. y = 1-4, pd/pof = 0.314. 

of given Mj, yi is similar. In particular the variation of Mach number along the 
axis is prescribed by and depends only on Mi and yi. The value of P therefore 
determines also the position a t  which the normal shock crosses the axis. 

The Mach-number distribution along the axis can be calculated theoretically. 
Owen & Thornhill (1952) give a solution by the method of characteristics for a jet 
with Mi = 1.0038 and y j  = 1.4 expanding into a vacuum. That solution has been 
used here for jets with Nj = 1 and yi = 1.4. For other values of Mj and y j  the 
approximate methods of calculation suggested by Adamson & Nicholls (1959) 
have been used. 

Matching the Mach number M, upstream of the shock as a function of P with 
Owen & Thornhill's solution shows that, when P > 5, 

L, = lS& = 0.77P4 (10) 

very closely for Mj = 1 and yi = 1.4. Since C, = PI/D2, equation (10) can be 
written 

Similar relations apply for other values of Mi, so that 1Jdm is a function of Mi, yi 
and C,. 

A model of the jet and interface flow is sketched in figure 15. The jet is taken 
to develop as an equivalent free jet, exhausting from poi to pa, but is assumed to 
terminate on a plane through the point at  which the terminal shock crosses the 
axis. The diameter d, of the jet in this plane may be obtained from the data 
presented by Love et al. (1959). For Mj = 1, the data may be represented closely 
by the equation 

(12) 0," = (d,/dj)2 = 0.3 + 0.325P. (pa/pOf)-', 

so that a t  constant or very high M,, (ds /dm)  is a function of C,, a, and Mi, yj .  
The fluid leaving the jet in the plane of the terminal shock is assumed t o  be 

uniform, with total pressure pof.  It is assumed to be choked in an annulus of 
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width 8 running from the edge of the jet to the interface its shown in figure 15. 
As in the approximate bluff-body solutions of Love (1957), the flow in this 
annulus is assumed uniform in the direction of the tangent, to the interface. The 
mean diameter of the annulus is taken to be approximately d,. The equation of 
continuity then gives, for Mj = 1, 

or 

or 

na,spof = ina;poj, 
A = S/dj = P/4Ds, 

8/dm = ( P I / D 2 ) .  I-'. (dS/drn)-', 

at intersection 

FIGURE 15. Flow model used to determine the position of the interface. 

showing that S/d, is a function of C,, a, and Mj, y j  (since for other Mi the 4 in 
(13) would be replaced by a different numerical constant). 

The distance x in figure 15 is given by Pythagoras's theorem. If X = x/dj, then 

4x2 = (Df-2A)'-O2 s7 (15) 

and all these quantities are functions of C,, a, Mj and y j .  

the axis, 

so that the interface position is a function of C,, a, Ni and yj .  

If lf is the distance from the jet orifice to the point where the interface crosses 

(16) lfldrn = (lsldrn) + (df/'drn) - (%I'm), 

23 Fluid Mech. 26 
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6.4. Matching the interface to the body 

If a shear layer reattaches to a solid surface, the flow immediately outside it is 
deflected through an angle e. This angle, as predicted by the reattachment model 
of Chapman et al. (1957) is a function of the Mach number of the flow just outside 
the shear layer and the velocity profile of the layer. With the assumptions already 
made for this flow, E would be a function of pd/pOf only. The jet-layer initial total 
pressure is not uniformly p o f ,  however, so that e is found to depend on other 
variables, too, but the magnitude of such effects will be shown to be small. 

FIGURE 16. Geometry of the interface and a spheroidal body. 

Tangent to body 

FIGURE 16. Geometry of the interface and a spheroidal body. 

If the body nose is smoothly curved, as in figures 15 and 16 which show a 
sphere, and the jet layer near reattachment is thin, then if e is fixed or a function 
of a, a specification of a will fix the position of the interface cone. Then for any 
value of l f /dm there is only one value of df/dm such that the interface-blunting 
sphere is tangent to the cone. The non-dimensional distance l f /dm to the interface 
is a function of (CF, a,  Mi, y j )  as shown in equations (10) to (16). The non- 
dimensional diameter df/dm of the blunting sphere determined from the length 
of the jet, fi(C,, a, Mj ,  y j )  must equal d,/dm determined from the momentum 
balance of $6 .2 ,  f l (CF,  a, Mj,  yj) .  

fi(c,, a, Mj, yj) = ( d f / d m )  =fZ(cF, a, q'> y j ) .  

a = f3(C,> Nj, Yj), 

Therefore (provided P and M, are high enough) 

(17) 
and, since fl, fi vary little with y j ,  a is effectively a function of C, and Mj only; 
and so, within the assumptions made, are all the other dependent variables of 
the flow. 
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The flow model may be used to derive pd/pnf explicitly as a function of Mi, CF. 
From the geometry of figure 16, when e = 0, for a spherically nosed body 

(dm/cZf) = (~dfsina+3d,+l,-x)/gdfsina, 

so that, when e is zero, 

D(,=,, = {D, + 2 sin u(L, - X)}/( 1 - sin a), (18) 

and, when E is not zero, 

D = DG+) ( 1 - sin a)/( cos e - sin a), 

giving D = {Df+2sina(L,-S)}/(cose- sina). (19) 

If u, P are treated as independent variables for calculation, D,, L,, X may be 
found from equations (6), (10) (or exactly from Owen & Thornhill 1952), (12), 
(13) and (15). Equation (19) is then used with equation (1) to give pd/pof as a 
function of C,, Mj, and e for the flow about a hemisphere. In calculation it is not 
necessary to limit work to the case of high P and M,. 

The relations of equations (18), (19) are essentially geometric, and a plane 
projection may be applied to figure 16 to give the geometry of interfaces meeting 
spheroids other than hemispheres. Equivalent bodies must pass through a given 
orifice and meet a given interface a t  the same angle. 

The projection is applied to the case e = 0 for simplicity, and it is assumed that 
the relation between equivalent bodies is not critically dependent on the value 
of E .  Then, if DE is the value of D for a spherical body equivalent to a spheroidal 
body given by D, A, 

DE/D = {A - (A2 + cot2 a)*}/( 1 - cosec a). (20) 

The effect of a non-zero value of e on the relation of equation (20) increases 
with A. The fit of a aquare-ended body to a given interface is independent of B ,  

whilst the effect for a sphere is given by comparing equations (18) and (19). 
A non-spheroidal body may be assigned an approximate value of A. 

6.5. Application of the analysis 

The functional relationship of equation (17) may be used to correlate experi- 
mental data. Figure 17 shows for regime 3 the dead-air pressure pa, the reattach- 
ment pressurep, and the reattachment angle 0, obtained from figures 6 , 8  and 10, 
plotted against Ck.  The results collapse well to single curves when it is considered 
that the values of P start a t  1.52 (D = 7.6). Figure 18 shows data obtained from 
photographs, and the relation of equation (1 1) for l,/d,. The values of 1, approach 
this line closely when P > 4. The bow-shock stand-off distance la appears to be 
linearly related to C$, and if the values are extrapolated to C, = 0 they include 
the case with no jet. The distance to the interface 1, is also shown as calculated 
from the bow-shock co-ordinates. These results show that the relationship of 
equation (17) adequately describes the flow. 

Figure 19 shows pd/pof from figure 11 plotted against Cb.  To a large extent, 
the records for each nose shape come together. The tapping in the blunt 
ellipsoidal model ( A  = 0.5) was near the reattachment zone, and so shows greater 
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variations than those recorded for h = 0. In some cases these can be related to 
changes in the reattachment flow. 

The geometric relationship between body and interface used to derive D, in 
equation (20) suggests that these results may be further brought together by 
relating them to an equivalent jet-flow-force coefficient C,, defined by 

CFE = PIID&. (21) 

The ranges of pd/pof covered by the curves in figure 19 are replotted against CkE 
in figure 20, and come together well.pd/pOf tends to be lower for higher values of A, 
and this trend can be related to the turning at  reattachment. 

Figure 21 shows curves of pd/pOf calculated from the analytical model for the 
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case M m -  - 2.5 , N.  3 = 1, yj = 1.4, h = 1, with B = 0", lo", 20". The curve for B = 0 
corresponds also to the predicted relationship between pd/pOf and C,, for h = 0, 
regardless of the value of E .  The subsidiary study of reattachment (Finley 1963) 
leads to an estimate for the value of B which varies from approximately 10" at 

0.5 

0.4 

0.3 

E 
2 
w 

0.2 

0.1 

I I I 

I I I 

0.1 0.2 0.3 0.4 

@ 

O O  / 
FIGURE 18. Bow shock (Zb), jet shock (&), and interface (If), positions as measured from 
photographs, related to the jet Aow-force coefficient C,. M ,  = 2.5, M ,  = 1, y = 1.4, h = 1. 
0, D = 7-6; 0 ,  0 ,  D = 16.4; 8 ,  D = 33.3. 

C$ = 0.1 to approximately 20" at C& = 0.3. The experimental values of p,/pof 
are shown for h = 1 and h = 0. They agree well, considering the assumptions 
made, but tend to diverge a t  high values of C,. Figure 22 shows the calculated 
value of pd/pof  for h = 1, Mj = 2.6, together with the experimental values. Again 
agreement is good. 

Figure 23 shows the predicted and experimental values of the distance to the 
interface. The analysis is seen to overestimate I f  at high C,, and underestimate at 
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low C,. It can be shown that making an allowance in the analysis for the jet-layer 
thickness (which is about 0.4CFd, when Mj = 1 and M, = 2-5 )  brings the curves 
into closer agreement at high C,. The remaining discrepancy at high C, can be 
accounted for by the observation that the jet terminal shock becomes domed, not 
flat as assumed in the analysis. At low C, the assumption of choked flow in the 
annulus 6 underestimates l f ,  since pd/pof  is above the critical pressure ratio. 
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FIGURE 19. Experimental values of the dead-air pressure p ,  on various spheroidal models 
(from figwe 11) related to  the flow-force coefficient C,. M ,  = 2.5, M ,  = 1, y = 1-4. 
Identification as in figure 11. 

Many theoretical or empirical refinements may be introduced if it  is desired to 
improve the numerical accuracy of the analysis, but the simple model predicts 
the main features and trends of steady flows with considerable success. 

7. The structure and steadiness of the jet 
The form of the jet must be consistent with the static pressure surrounding it, 

and with the fact that the total pressure on the axis must be reduced from poi 

This condition will be assumed not to affect the initial development of the jet 
which will be taken to be the same as that of an equivalent freejet of total pressure 
poi exhausting to a still atmosphere of pressure p d .  

Such a free jet displays the well known series of jet cells described, for example, 
by Hartmann & Lazarus (1941). Figure 24 shows typical forms of the structure 
of an underexpanded jet, i.e. one in which the static pressure in the nozzle exit 
plane p j  is greater than the ambient pressure. The flow expands on leaving the 

to POf. 
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orifice, and the expansions are reflected by the free jet boundary as concurrent 
compression waves, which coalesce to form an intercepting shock. This shock is 
reflected a t  the axis either by a regular resexion as in figure 24 (a) ,  for low pressure 
ratios pj /pa ,  or by forming a Mach disc as in figure 24(b) for high pi/pa. The 
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FIGURE 20. Dead-air pressure p ,  for spheroidal models correlated to the equivalent jet-flow 
force coefficient C F E  based on the diameter of an equivalent spherical body. 

reflexion a t  the axis ends the first cell of the jet, but further cells may be formed 
by repeated expansion and recompression of the jets. 

Apart from any effects of viscosity, the initial flow depends on the exit Mach 
number Mi, the gas specific-heat ratio y j ,  and the exit static-pressure ratio pi/pa. 
The flow within the part of the first cell bounded by intercepting shock and 
Mach disc is independent of the static-pressure ratio pj /pd .  This region is 
identically the same in the free jet and in the particular case of steady flow with 
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a single jet cell against a supersonic stream, described in $6.3,  except that the jet 
opposing a free stream is cut short by the terminal shock. The position of the 
intercepting shock is determined by pJpd as well as Mj and yi in both cases. In 
the first cell of the free jet the position of the reflexion of the intercepting shock, 
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and the development of the entire flow downstream of it, also depends on p j / p d .  
If I, is the distance to the first shock wave crossing the axis of the free jet, 

For a Mach disc, L, cannot at present be predicted accurately by theoretical 
methods. Extensive experimental data are available, however, and it is found 
that L, increases with p j / p d .  

In  a steady jet flow against a supersonic stream, the jet comes to rest at the 
free stagnation point. It is assumed here that if there is more than one cell, the 
jet will continue to develop as the equivalent free jet. In  all cases there must be 
some mechanism by which the jet total pressure is reduced to the free-stream 
Pitot pressure p O f .  If this is accomplished by shock waves, the final shock wave 
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crossing the axis must be a normal shock. Now it is commonly observed that 
a stable normal shock does not occur in a region of decelerating flow. A steady 
terminal shock is therefore restricted to those regions of the equivalent free jet 
in which the flow is accelerating. In  figure 24 + signs are shown on the axis where 
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FIGURE 22. Dead-air pressure predicted by the flow model of $ 6  compared with 
experimental values. M ,  = 2.5, M j  = 2.6, y = 1.4, h = 1. 
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FIGURE 23. Interface position 1, predicted by the flow model compared with experimental 
values. M ,  = 2.5,  M j  = 1, y = 1.4, h = 1. -, Predicted values. Experimental values: 
0, D = 7.6; @ , D = 16-4; 0 , D = 33.3. 
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the flow is accelerating, following the discussion of planar jet structure by Pack 
(1948). If the terminal shock occurs anywhere downstream of the first jet cell, 
then the flow entering it depends on pj/pd. If it occurs in the first jet cell, the 
approaching flow is independent of pj/pd, also it is the only shock crossing the 

Mach discs 
\/ 

=-++!=+ Intercepting 
shocks 

( a )  ( b )  

FIGURE 24. Structure of an underexpanded jet. 
(a)  ' Regular' reflexion; (a) ' Mach-disc' reflexion. 

axis and is responsible for the whole of the required reduction of jet total pressure. 
This is the case described in Q 6.3, with the distance 1, of the shock from the nozzle 
exit determined by poj/pof, Mj and y j  

L s  = ls/dj = fb(P, Mj, yj)* (23) 

The analysis of $ 6  shows that pa depends on the length of the jet. If the 
terminal shock occurs in the first cell of the equivalent free jet (L, < L,) it is 
unaffected by any change in pa which may be brought about by a change in the 
length of the jet, If, however, the terminal shock occurs downstream of the first 
cell of the equivalent free jet (L, > L , )  a change in pa will influence the position 
of the shock, and so the length of the jet, and a closed-loop oscillation mechanism 
is established. A sufficient condition for steadiness (though not in fact a necessary 
one, as will be shown later) is that L, should be greater than L,. That is 

L w ( q . J  Yj, PjIPd) > L,(P, 3 . j  Yj). 

L w  = f6(P, 3.J Yj, PdIPOf), 

(24) 

Now pi/pa = (pj/poj) (poj/pof)  (pof/pd), so that equation (22) may be written 

in which L, increases as pd/pOf falls. 
An alternative form of (24) is therefore 

(PdlP0f)max < m p ,  3 . 9  Yj), (25) 

where I7 is the critical value of pd/pof for which the shock position in the jet 
coincides with the shock position in the equivalent free jet (L, = L,) or 

ffAP, 3 . 9  Yj, a = f d P ,  q., Yj). (26) 

Figure 25 shows a curve of L, calculated from Owen & Thornhill's (1952) exact 
solution for the axial Mach-number distribution of a jet with Mj = 1-0038 and 
y j  = 1.4, exhausting into a vacuum. Experimental results for Mj = 1 are also 
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FIGURE 25. Position of jet terminal shock as calculated using Owen I% Thornhill’s (1952) 
results, and as measured from photographs. ill, = 1 ,  y = 1.4. ---, Position of the first shock 
of the equivalent free jet. Experimental values: 0, D = 7.6; a, D = 16.4; C ,  D = 33-3. 
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FIGURE 26. Predicted value of the maximum permissible dead-air pressure, and experi- 
mental values of the maximum observed mean dead-air pressure. M ,  = 2.5, y =  1.4, 
M ,  = 1, 2.6. Predicted values: -. Experimental values: 0, h = 0; A, h = 0.5; 0, h = 1.0. 
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shown. They agree very well, with a slight tendency to low values of L, which 
may be attributed to the small difference of Mi. Also shown are curves of the 
variation of L, with P for each of the large hemispherical models, calculated 
from the experimental values of pd/pof and the experimental data of Love et at. 
(1959) for the shock position in a free jet. It can be seen that L, approaches L, 
as P tends to PCrit but does not reach equality. 

Figure 26 shows the value of 17 calculated from equation (26). (The ambiguity 
near P = 2.5 results from slight uncertainty as to when regular reflexion, as in 
figure 24 (a),  breaks down and is replaced by the Mach reflexion of figure 24 (b).) 
Note that 17 tends to a nearly constant value at high values of P. The curve for 
Mj = 2.6 was obtained using Adamson & Nicholls’ (1959) approximate methods. 
The experimental values of (pd/pof)max for regime 3, near Pcfit are also shown. 
They lie below 17 but form a band of the same general shape, again tending to 
a constant value at high values of P. The conditions L, > L, and pd/por < Dare 
therefore satisfied, but the equalities L, = L, and pd/pof = 17 do not predict Pcrit 
accurately. The differences are ascribed partly to the fact that p/pof at the jet 
boundary is slightly higher than the minimum p/pOf on the model nose which has 
been arbitrarily identified with pd/pOf here, but mainly to the presence of small 
fluctuations in the nominally steady flow. Substantial variations of the dead-air 
pressure in time are indicated by the considerable range of movement of such 
flow features as the turning shock (G, figure 3), shown in schlieren photographs 
such as figures 4 ( e ) ,  plate 1, and 9 ( b ) ,  plate 2. Thus the experimental values of L, 
and (pd/pOf)max shown in figures 25 and 26 representtime means, and so mark the 
centre-line of a band. If this band intersects the curves for Ls and 17, the steady 
flow of regime 3 breaks down. 

The levelling-off of 17 and the observed (pd/pOf)max a t  high P implies a levelling- 
off in the critical value of CFE also, since p,lpof has been shown to depend on GFE 
only at high P for given Mi and yi. It follows that at high values of P 

PcritCC 0;. (27) 

In  a range of low values of P, the increase in (p,/pof)maxwith P and thedecrease 
in pd/pof with C,, combine to give the observed approximately linear variation 
of Pcrit with D or D, for P less than about 5, 

pcrit CC DE* (28) 

In  figure 27, the observed values of PCrit of the present study, taken from 
figure 12, are plotted against D,. In  calculating DE from D ,  the value of a used 
in equation (20) has been calculated from the experimentalvalue of (p,j/pof)max as 
a function of P. Values from previous investigations for which Mi = 1 are also 
shown. In many cases no precise value of Perit can be deduced, and the range 
within which it lies is then shown by a dotted line. The results plotted cover a 
range of free-stream Mach numbers M, from 1.5 to 6.0. Body shapes range from 
h = 0 to h = 6, and jet gases include helium, nitrogen and carbon dioxide as well 
as air. The proportional relations of equations (27) and (28) are shown, and agree 
well with the current data and that of previous workers, if a suitable constant of 
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proportionality is chosen, agreeing with the present results a t  P = 5. The 
sufficient condition for steadiness is established and may be stated simply as 

where CFE(crit) is a function of Hj and P,  tending to a function of Nj only a t  high 
values of P. For Mj = 1, the results of the present study suggest that CRE(crit) 

tends to approximately 0.01. 

D E  

FIGURE 27. Critical total-pressure ratio Pcdt related to  the equivalent body diameter DE. 
Experimental values of the present and previous investigations compared to the propor- 
tional relations ( 2 7 )  and (28). Experimental values: 0, h = 0;  A, h = 0-5; 0, h = 1.0; 0, 
h = 2.0; x , other workers. a, Lopatoff (1951), M, = 1.5, Mi = 1, h = 6, air jet; b, Love 
(1952), M ,  = 1-62, M ,  = 1, h = 6, air jet; c, MacMahon (1958), M ,  = 5.8, M ,  = 1, h = 1, 
nitrogen and helium jets; d, Romeo & Sterret (1963), M, = 5-8, M j  = 1, h = 1, air jet; e ,  
Charczenko & Hennessy (1961), M, = 2, h = 1, air jet (calculations based on throat of 
conical nozzle and M ,  = 1). 

That this sufficient condition is not necessary is shown by the observed exist- 
ence of the steady flows with multi-celled jets of regime 1. In  this case, a closed 
feedback loop exists, but the feedback is presumably negative. Since no steady 
multi-celled flow has been observed with a Mach reflexion of the intercepting 
shocks at the axis, it  is suggested that the strong influence of the ambient 
pressure on the total pressure at the axis in the second and succeeding cells in 
such cases results in a positive feedback effect. The diagonal shocks of the regular 
reflexion cause a much smaller drop in total pressure, and correspondingly a small 
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movement of the shocks will cause little change in the condition of the flow 
entering a terminal shock in the second or succeeding cells. An alteration of 
ambient pressure will therefore have a smaller destabilizing effect than for a jet 
with Mach reflexions, and it is suggested that the steady flow of regime 1 will only 
exist if a regular reflexion is possible, i.e. ifpJpd is less than about 2 for Mi = 1. 
This implies an upper limit for P of about 2, ignoring fluctuations, and a practical 
limit of about 1.6. 

8. Discussion 
The experimental results show that the analysis of $ 6 describes the steady 

flows with single-cell jets of regime 3 with fair accuracy. The essential argument 
is that members of a family of bodies passing through a given jet-orifice position 
and intersecting a given interface a t  a specified or negligible angle e are inter- 
changeable, and equivalent to the sphere of that family. The interface and its 
relation to the orifice are determined by the jet exit Mach number Mi, and a jet 
flow-force coefficient C,, based on the sphere of the family of bodies. These two 
quantities include all the principal independent parameters listed at the end 
of $2.  The other parameters have minor effects which may be predicted as 
corrections to the correlated experimental data using the analysis of $ 6. 

It has been shown that the flow can and, in general, will become unsteady if 
the terminal shock of the jet is influenced by the transport of pressure fluctuations 
from the dead-air region. This implies that a single-cell jet flow will be steady. 
Romeo & Sterret (1963) observed the transition from long multi-celled jets in 
the unsteady-flow regime 2 to the steady single-cell jets of regime 3, and con- 
cluded that a single cell was a necessary condition for steadiness. In  the long 
high-Mach-number jets which they studied, the shear layer at the edge of the jet 
reached the axis in the second cell, and Romeo & Sterret suggested that the 
unsteadiness of regime 2 was caused by the transport of turbulent fluctuations 
to the axis. If pursued this argument would lead to the same numerical conclu- 
sions as $ 7 ,  but would yield a necessary rather than a sufficient condition. That 
the transport of turbulence is not necessary for unsteadiness can be seen in 
figure 9(b), plate 2, where the unsteady jet is not long enough for the shear layer 
to have enveloped the axis. 

The low pressures in the dead-air region produced by an opposed jet result in 
a reduction of the forebody drag of a bluff body. The reverse thrust of the jet 
must be set against this, and it is found that the available net reduction in axial 
force (ignoring base pressures) depends on the bluntness of the body. Love (1952) 
and Lopatoff (1951) found that the net reduction of drag for a slender ( A  = 6) 
body did not exceed 50 yo of the reverse thrust applied. If such a body is being 
propelled by reaction jets, therefore, it  remains more economical of thrust t o  
direct the whole available jet thrust to the rear. A simple application of the 
pressure results of the present study, however, shows that the net reduction of 
forebody drag for a hemisphere could be of the order of 150 yo of the opposed jet 
thrust when C, -h 0.15. If such a body were propelled by a rearward-facing jet, 
aided by a drag-reducing opposed jet, the total thrust requirement could be 
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about 60 yo of that required to propel it by a rearward jet only. If therefore a 
blunt body, such as, for example, a radome, must be propelled at high Mach 
numbers, the method appears extremely attractive. 

Observations by Ferri & Bloom (1957), Stalder & Inouye (1956), MacMahon 
(19581, and Warren (1960) have shown that a secondary flow introduced at the 
nose may reduce appreciably the total heat transfer to a blunt body. Interest in 
the use of separated jets for this purpose has however declined as a result of 
Warren’s measurement of very high local heating rates in the region of the 
reattachment zone, which were in some cases even higher than a t  the stagnation 
point with no injection. If such a secondary flow is to form a successful ‘heat 
blanket’ it must separate the main flow from the body surface to some point 
rearwards of the stagnation region a t  reattachment. At the reattachment point 
the flow will then reach the stagnation temperature of the jet stream, which must 
have a suitably low value. For this protective approach to be successful the jet 
layer at reattachment must be thick, so that the shear layer separating the jet 
from the dead-air region, and that formed on the interface, cannot transport hot 
fluid from the main stream as far as the dividing stream surface which stagnates 
at  the reattachment point. This implies high values of C,. 

If the integrity of the jet layer is to be preserved, it will also be necessary to 
ensure that the flow is steady, which again implies high values of C,. A calcula- 
tion based on the results of the present study indicated that Pcrit for the body 
used by Warren would be about 4.5, and this was only exceeded in one experi- 
ment. It seems probable therefore that the high heating rates observed by Warren 
occurred in unsteady flow with thin jet layers, and that the application of 
separated jets to heat protection should be re-examined experimentally, using 
high values of C, and jets with low total temperatures. 

9. Conclusion 
The aerodynamic aspects of the flow of a separated jet from a body so as to 

oppose a supersonic mainstream depend mainly on the Mach number of the jet 
and a jet flow-force coefficient. A steady flow is obtained when the flow force 
coefficient exceeds a critical value which depends on the jet Mach number. There 
is reason to re-examine the practical applications of such flows to drag reduction 
and heat protection for bluff bodies in continuous high speed flight. 

The author performed these investigations while working for the degree of 
Ph.D. at  Cambridge University and wishes to thank his supervisor, Mr E.P. 
Sutton, for his advice and encouragement throughout. He also wishes to thank 
the Master and Fellows of Emmanuel College for financial assistance. 
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